Algebra lineare Esempi

Trovare gli Autovalori A=[[5,-2],[-2,2]]
Passaggio 1
Imposta la formula per trovare l'equazione caratteristica .
Passaggio 2
La matrice identità o matrice unità della dimensione è la matrice quadrata con gli uno sulla diagonale principale e gli zero altrove.
Passaggio 3
Sostituisci i valori noti in .
Tocca per altri passaggi...
Passaggio 3.1
Sostituisci per .
Passaggio 3.2
Sostituisci per .
Passaggio 4
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.1
Moltiplica per ogni elemento della matrice.
Passaggio 4.1.2
Semplifica ogni elemento nella matrice.
Tocca per altri passaggi...
Passaggio 4.1.2.1
Moltiplica per .
Passaggio 4.1.2.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 4.1.2.2.1
Moltiplica per .
Passaggio 4.1.2.2.2
Moltiplica per .
Passaggio 4.1.2.3
Moltiplica .
Tocca per altri passaggi...
Passaggio 4.1.2.3.1
Moltiplica per .
Passaggio 4.1.2.3.2
Moltiplica per .
Passaggio 4.1.2.4
Moltiplica per .
Passaggio 4.2
Aggiungi gli elementi corrispondenti.
Passaggio 4.3
Simplify each element.
Tocca per altri passaggi...
Passaggio 4.3.1
Somma e .
Passaggio 4.3.2
Somma e .
Passaggio 5
Find the determinant.
Tocca per altri passaggi...
Passaggio 5.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 5.2
Semplifica il determinante.
Tocca per altri passaggi...
Passaggio 5.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.2.1.1
Espandi usando il metodo FOIL.
Tocca per altri passaggi...
Passaggio 5.2.1.1.1
Applica la proprietà distributiva.
Passaggio 5.2.1.1.2
Applica la proprietà distributiva.
Passaggio 5.2.1.1.3
Applica la proprietà distributiva.
Passaggio 5.2.1.2
Semplifica e combina i termini simili.
Tocca per altri passaggi...
Passaggio 5.2.1.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.2.1.2.1.1
Moltiplica per .
Passaggio 5.2.1.2.1.2
Moltiplica per .
Passaggio 5.2.1.2.1.3
Moltiplica per .
Passaggio 5.2.1.2.1.4
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 5.2.1.2.1.5
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 5.2.1.2.1.5.1
Sposta .
Passaggio 5.2.1.2.1.5.2
Moltiplica per .
Passaggio 5.2.1.2.1.6
Moltiplica per .
Passaggio 5.2.1.2.1.7
Moltiplica per .
Passaggio 5.2.1.2.2
Sottrai da .
Passaggio 5.2.1.3
Moltiplica .
Tocca per altri passaggi...
Passaggio 5.2.1.3.1
Moltiplica per .
Passaggio 5.2.1.3.2
Moltiplica per .
Passaggio 5.2.2
Sottrai da .
Passaggio 5.2.3
Riordina e .
Passaggio 6
Imposta il polinomio caratteristico pari a per trovare gli autovalori .
Passaggio 7
Risolvi per .
Tocca per altri passaggi...
Passaggio 7.1
Scomponi usando il metodo AC.
Tocca per altri passaggi...
Passaggio 7.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 7.1.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 7.2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 7.3
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 7.3.1
Imposta uguale a .
Passaggio 7.3.2
Somma a entrambi i lati dell'equazione.
Passaggio 7.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 7.4.1
Imposta uguale a .
Passaggio 7.4.2
Somma a entrambi i lati dell'equazione.
Passaggio 7.5
La soluzione finale è data da tutti i valori che rendono vera.